

The 39th Annual AAAI Conference on Artificial Intelligence February 25 – March 4, 2025 | Philadelphia, Pennsylvania, USA

A Spatiotemporal Approach to Tri-Perspective Representation for 3D Semantic Occupancy Prediction

^{1,2}Sathira Silva ¹Savindu Wannigama ³Gihan Jayatilaka (presenter) ²Muhammad Haris Khan ¹Roshan Ragel

¹University of Peradeniya, Peradeniya 20400, Sri Lanka ²Mohamed bin Zayed University of Artificial Intelligence, Abu Dhabi, UAE ³University of Maryland, College Park, MD 20742, USA

Contents

- Background & Problem Statement
- Contributions
- Architecture:
 - Virtual View Transformation (VVT)
 - Spatial Cross Attention (SCA)
 - Temporal Cross View Hybrid Attention (TCVHA)
- Experiments:
 - o 3D SOP
 - LiDAR Segmentation

Background & Problem Statement

 3D Semantic Occupancy Prediction (SOP) aims to predict per-voxel semantic labels for a 3D scene, enabling a dense and structured understanding of the environment for applications like autonomous driving and robotics.

 Existing 3D SOP methods focus on spatial fusion while overlooking temporal information, limiting their ability to leverage historical context.

Background & Problem Statement

 3D Semantic Occupancy Prediction (SOP) aims to predict per-voxel semantic labels for a 3D scene, enabling a dense and structured understanding of the environment for applications like autonomous driving and robotics.

 Existing 3D SOP methods focus on spatial fusion while overlooking temporal infection development of the dimiting their ability to leverage historical context.

Background & Problem Statement

 3D Semantic Occupancy Prediction (SOP) aims to predict per-voxel semantic labels for a 3D scene, enabling a dense and structured understanding of the environment for applications like autonomous driving and robotics.

 Existing 3D SOP methods focus on spatial fusion while overlooking temporal information, limiting their ability to leverage historical context.

Contributions

- We introduce S2TPVFormer, which features a novel temporal fusion workflow for TPV representation and utilizes CVHA to enhance spatiotemporal information sharing across planes.
- S2TPVFormer achieves a +4.1% mIOU improvement over TPVFormer on the nuScenes validation set, showcasing the strong potential of vision-based 3D_SOP

Contributions

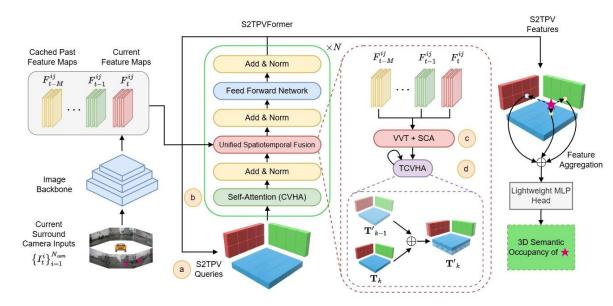
- We introduce S2TPVFormer, which features a novel temporal fusion workflow for TPV representation and utilizes CVHA to enhance spatiotemporal information sharing across planes.
- S2TPVFormer achieves a +4.1% mIOU improvement over TPVFormer on the nuScenes validation set, showcasing the strong potential of vision-based 3D_SOP.

Contributions

- We introduce S2TPVFormer, which features a novel temporal fusion workflow for TPV representation and utilizes CVHA to enhance spatiotemporal information sharing across planes.
- S2TPVFormer achieves a **+4.1% mIOU improvement over TPVFormer** on the nuScenes validation set, showcasing the strong potential of vision-based 3D SOP.

Architecture

Virtual View Transformation (VVT)

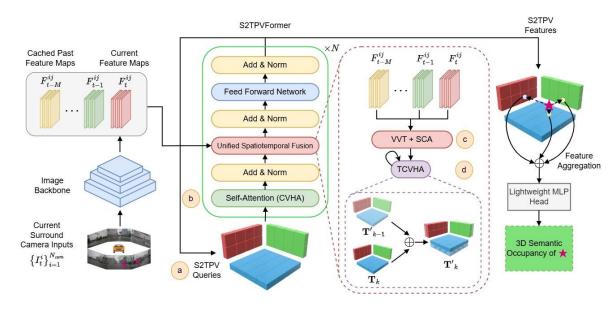


 Purpose: Enables viewing camera features as if they were captured in the current time step.

How It Works: Reconstructs missing or misaligned visual information from past views.

Architecture

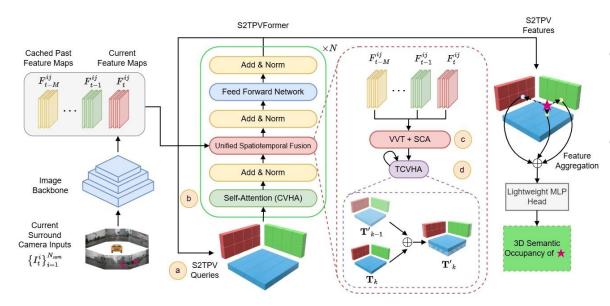
Spatial Cross Attention (SCA)



- Purpose: Fuses virtual camera view features onto S2TPV queries at each time step.
- How It Works: Extracts spatial features from virtual camera views, aligns and integrates these features with current S2TPV queries.

Architecture

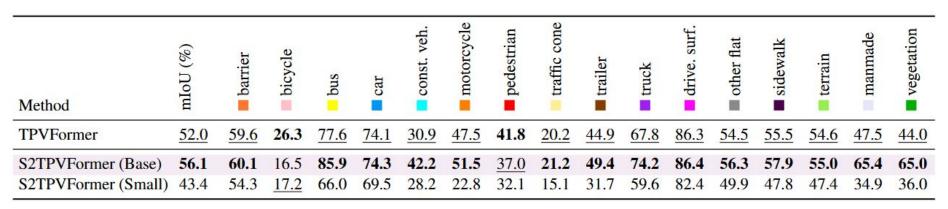
Temporal Cross View Hybrid Attention (TCVHA)



- Purpose: Merges virtual spatial TPV features across multiple time steps.
- How It Works: Establishes cross-time dependencies and refines spatial-temporal feature fusion for better scene understanding.

Experiments

Comparative Results for 3D SOP



3D SOP results on the nuScenes validation set

+4.1% improvement to mIoU accuracy compared to SOTA

Experiments

Comparative Results LiDAR Segmentation

Method	Input Modality	mloU (%)	barrier	bicycle	sud –	car	const. veh.	motorcycle	 pedestrian 	traffic cone	trailer	truck	drive. surf.	other flat	 sidewalk 	terrain	manmade	 vegetation
MINet	LiDAR	56.3	54.6	8.2	62.1	76.6	23.0	58.7	37.6	34.9	61.5	46.9	93.3	56.4	63.8	64.8	79.3	78.3
LidarMultiNet	LiDAR	81.4	80.4	48.4	94.3	90.0	71.5	87.2	85.2	80.4	86.9	74.8	97.8	67.3	80.7	76.5	92.1	89.6
UniVision	Lidar	72.3	72.1	34.0	85.5	89.5	59.3	75.5	69.3	65.8	84.2	71.4	96.1	67.4	71.9	65	77.9	71.7
PanoOcc	LiDAR	71.4	82.5	32.3	88.1	83.7	46.1	76.5	67.6	53.6	82.9	69.5	96.0	66.3	72.3	66.3	80.5	77.3
OccFormer	LiDAR	70.8	72.8	29.9	87.9	85.6	57.1	74.9	63.2	53.5	83	67.6	94.8	61.9	70.0	66.0	84.0	80.5
TPVFormer-Small [†]	Camera	59.2	65.6	15.7	75.1	80.0	45.8	43.1	44.3	26.8	72.8	55.9	92.3	53.7	61.0	59.2	79.7	75.6
TPVFormer-Base[†]	Camera	69.4	74.0	27.5	86.3	85.5	60.7	68.0	62.1	49.1	81.9	68.4	94.1	59.5	66.5	63.5	83.8	79.9
S2TPVFormer (Base)	Camera	<u>60.4</u>	61.2	18.2	80.6	78.1	<mark>55.2</mark>	57.6	41.5	26.4	76.1	61.3	89.8	<u>49.4</u>	56.6	58.0	79.3	76.4

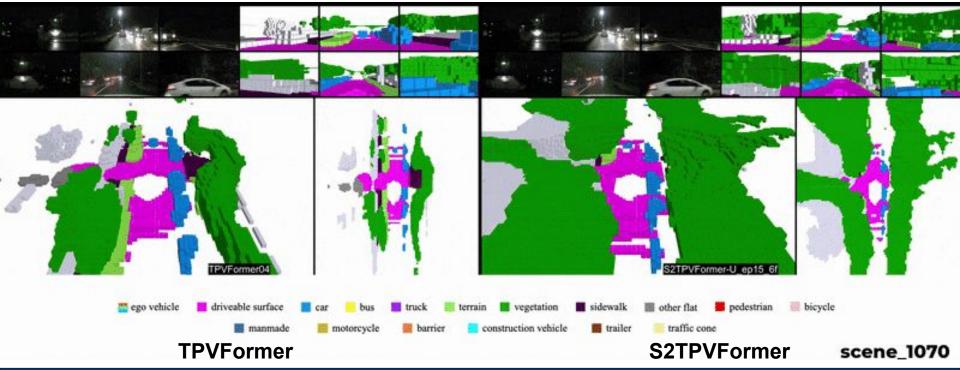
LidarSeg results on the nuScenes test set.

Thank You!

Link to our project page

Visualization

• nuScenes: 1070, 0905, 0904, 0562

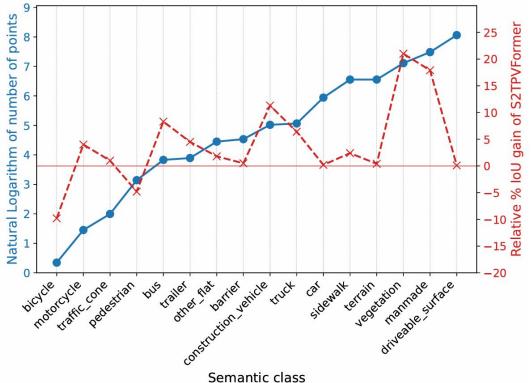


Unified Spatio-Temporal Tri-Perspective View Representation for 3D Semantic Occupancy Prediction

Prediction Summary

- This figure presents the confusion matrix of the S2TPVFormer (base) model's predictions.
- This confusion matrix corresponds to the same predictions analyzed in our paper, where we detail the per-class loUs and the mean IoU for 3D Semantic Occupancy Prediction (SOP) on the nuScenes validation dataset.

Relative mIoU Gain



- This figure presents a dual-axis representation, where
 - the blue axis and its corresponding graph show the distribution of the natural logarithm of the number of per-class ground truth points in the training dataset.
 - Conversely, the red axis and its graph show the per-class IoU gain achieved by S2TPVFormer in comparison to TPVFormer.